
Advantages of Cooperation Between Reinforcement

Learning Agents in DiÆcult Stochastic Problems

Hamid R. Berenji, David Vengerov

Intelligent Inference Systems Corp.

Computational Sciences Division, MS: 269-2

NASA Ames Research Center

Mountain View, CA 94035

berenji@ptolemy.arc.nasa.gov

vengerov@stanford.edu

Abstract| This paper presents the �rst results

in understanding the reasons for cooperative ad-

vantage between reinforcement learning agents.

We consider a cooperation method which con-

sists of using and updating a common policy. We

tested this method on a complex fuzzy reinforce-

ment learning problem and found that cooperation

brings larger than expected bene�ts. More pre-

cisely, we found that K cooperative agents each

learning for N time steps outperform K indepen-

dent agents each learning in a separate world for

K*N time steps. In this paper we explain the ob-

served phenomenon and determine the necessary

conditions for its presence in a wide class of rein-

forcement learning problems.

I. Introduction

In recent years there has been a considerable amount of

interest in multi-agent systems [e.g., Luck, 1997; Sycara,

1998]. One approach to modeling multi-agent learning is

to augment the state of each agent with the information

about other agents [Littman, 1994; Mataric, 1997; Stone

and Veloso, 1999]. However, this approach is diÆcult to

implement in noisy environments where agents cannot re-

liably discern states and actions of other agents. A more

decentralized approach is to give each agent the capability

of independent learning in the environment while allow-

ing agents to share learning experience when they �nd it

bene�cial.

Several cooperative learning models of this type have

been proposed. Kelly and Keating, [1998] considered sit-

uations where several robotic agents were learning to avoid

stationary and moving obstacles. A common set of fuzzy

automata was used by cooperating agents to represent

their possible states. Learning consisted of agents taking

turns in updating probabilities with which actions were

selected in each automaton. In another related work, Tan

[1993] simulated several hunters learning to capture a prey

in a tile world using reinforcement learning (RL). He stud-

ied two RL-based cooperation methods: agents updat-

ing a common policy and agents averaging periodically

their individual policies. He found that both methods

performed equally well on this task, outperforming unco-

operative agents that were learning for the same number of

time steps. Whitehead [1991] obtained a theoretical upper

bound on the increase in the learning rate due to cooper-

ation between multiple agents in a certain class of Markov

Decision Processes (MDP's). The considered problem for-

mulation required a �nite state space and a deterministic

environment with only one goal state. Whitehead showed

that under such a formulation, K cooperative agents can

learn the optimal policy at most K times faster than a

single agent.

In our previous work [Berenji and Vengerov, 1999], we

created a complex tile world for investigating the bene-

�ts of cooperative reinforcement learning in more general

problems than the ones considered previously. In partic-

ular, our setup consisted of a partially observable envi-

ronment with a continuous state space and multiple goals

with stochastic properties, which we called \opportuni-

ties". We found that for some parameter choices, the per-

formance improvement due to cooperation surpassed the

theoretical bound obtained by Whitehead, but for other

parameter choices it did not. In this paper we present a de-

tailed analysis of the above phenomenon and describe the

necessary conditions for the extra performance improve-

ment. We will start by demonstrating the strongest ver-

sion of this phenomenon on a simple analytically tractable

problem. Then, we will show that a weaker version of this

phenomenon is still present in a broad class of more com-

plex problems that are not hand crafted for its existence.

II. One-Dimensional World

Consider the following problem. All events are happening

on a line, which, without loss of generality, we can de�ne to

be the x-axis. Agent is always placed at 0 at the beginning

of every episode. Opportunity 1 is at -1, while opportunity

2 is at +2. The reward of each opportunity is 50 and

the step cost is either 60 or -10 with probability (w.p.)

0.5. The agent has two actions: move left (L) and move

right (R). If an agent steps into a goal state containing an

opportunity, then the episode ends and the agent receives

the opportunity reward minus the total path cost since

the beginning of the episode.

In the above problem formulation, the agent has only

two distinct states, corresponding to its location at 0 and

at 1. Call these states x0 and x1. There are four Q-values

associated with these states: Q(x0; L), Q(x0; R), Q(x1; L),

and Q(x1; R). These Q-values are initialized to 0 at the

beginning of every simulation. At every time step, the

agent chooses the action that gives the highest Q-value in

its current state. The �rst action in every simulation is to

move left. If the two Q-values are equal at any time in the

future, the agent chooses the same action as was taken in

the previous time step. Agent uses undiscounted Monte

Carlo learning to update its Q-values. If the episode began

at time T0 and ended at time T1, then for T0 � t < T1,

the agent performs the following update:

Q(xt; at) = Q(xt; at)+�(RT1+

T1�1X
�=t

g(�)�Q(xt; at)); (1)

where RT1 is the opportunity reward and g(�) is the step

cost at time � .

An agent in the above problem will oscillate inde�nitely

between the two states x0 and x1 if it ever happens that

Q(x0; L) < Q(x0; R) while Q(x1; L) > Q(x1; R). Let us

call this ordering of Q-values a \failure." It can be veri�ed

that at least three time steps are required to generate a

failure. More speci�cally, a failure will occur if the agent

incurs the cost of 60 upon the �rst step to the left, and

then incurs costs of -10 and 60 upon the next two steps to

the right. If the learning rate � = 0:1, then at the end of

the �rst episode the agent will have Q(x0; L) = �1 while

Q(x1; L) = 0, and at the end of the second episode the

agent will have Q(x0; R) = 0 while Q(x1; R) = �1.

Now consider two agents, each of which is faced with

the above problem and which are using and updating the

same set of Q-values. It can be veri�ed that at least three

time steps are again required to generate a failure, which

will happen if both agents encounter the failing sequence

of step costs given above. Since the probability of this

sequence occurring is 1=8, we see that a single agent fails

at the end of 6 time steps w.p. of at least 1=8, while two

cooperative agents fail at the end of 3 time steps w.p. of

1=64. Hence, if these agents are faced with a test problem

at the end of their learning, then cooperative agents are

expected to perform better than the independent agent.

Since we are ultimately interested in continuous state

spaces that require value function approximation to be

used, we can extend the above conclusions to the follow-

ing scenario. We assume that opportunity 1 is located at

M , and opportunity 2 is located at N > M , while the

agent can be placed anywhere between them at the begin-

ning of every episode. In this case, the agent can speed up

its learning signi�cantly and decrease its memory require-

ments by generalizing the learned Q-values across states

in the following way. The agent still stores only four Q-

values, corresponding to two general states: S(small) and

L(large). Then the Q-value of an action a (L or R) in

a state x (the one positioned at x along the line of the

world) is determined as:

Q(x; a) = �0(x)Q(S; a) + �1(x)Q(L; a); (2)

where �i(x) is monotonically increasing with �i(x) � 0.

This method of Q-value generalization corresponds to

fuzzy state generalization, which will be discussed in the

next section. It can also be viewed as a special case of

value function approximation using a linear combination

of features [Tsitsiklis and Van Roy, 1996].

We have applied the above function approximation ap-

proach to the original two-state learning problem for the

special case when �0(x)+�1(x) = 1 and �0(x0) = �1(x1).

In this case we have �1(x0) = �0(x1) = � and �0(x0) =

�1(x1) = 1��. We found that for any � > 0:5, all previous

conclusions still hold. That is, 60, -10, 60 is still the only

sequence of step costs resulting in a failure, and the fail-

ure probabilities for independent and cooperative agents

do not change.

III. Learning Algorithm

The value function approximation approach utilized in

the one-dimensional world is a special case of the follow-

ing more general approach. The Q-values are generalized

across states by using a function approximation architec-

ture Q(x; a; r) for approximating Q(x; a), where r is the

set of all learned parameters arranged in a single vector.

The basic parameter updating rule used by discounted Q-

learning or Monte Carlo learning for such an architecture

is [Bertsekas and Tsitsiklis, 1996]:

rt rt + �ÆtrrtQ(xt; a; rt); (3)

where � is the learning rate and Æt is the Bellman error

used in the corresponding learning rule for the look-up

table case:

Q(xt; a) Q(xt; a) + �Æt: (4)

For example, in the look-up table version of discounted

Monte Carlo learning,

Æt = RT +

T�1X
�=t

��tg(�)�Q(xt; a); (5)

where g(t) is the cost incurred at time t, is the dis-

counting factor and the summation extends until the end

of the episode. In the look-up table version of discounted

Q-learning,

Æt = g(t) + maxaQ(xt+1; a)�Q(xt; a): (6)

In the general version of discounted Q(�)-learning, equa-

tion (3) becomes:

rt rt + Æt

tX
�=T0

(��)t��rrtQ(xt; a; rt); (7)

where T0 is the time when the current episode began and

Æt is given by equations (5) or (6).

The fuzzy state aggregation given in the one-

dimensional world by equation (2) can be generalized as:

Q(x; a) =

KX
k=0

q(k; a)�k(x); (8)

where q(k; a) is the Q-value of taking the action a in the

k-th fuzzy state sk and �k(x) is the degree of membership

of state x to sk. If the action space is continuous, then

equation (8) still applies after changing �k(x) to �k(x; a).

With Q(x; a) given by equation (8), rrtQ(xt; a; rt) be-

comes �k(xt). Thus, equations (3) and (7) can now be

rewritten as matrix equations with each component given

by:

q(k; a) q(k; a) + �Æt�k(xt): (9)

q(k; a) q(k; a) + �Æt

tX
�=T0

(��)t���k(xt): (10)

The above equations have a natural interpretation in the

realm of fuzzy state aggregations: the Q-value of a fuzzy

state-action pair (sk; a) gets updated proportionally to its

contribution to the Q-value of the state-action pair (xt; a)

in equation (8).

If the average cost formulation is used instead of the

discounted cost formulation, then equations (9) and (10)

still hold, except that Æt in these equations is given by

[Sutton and Barto, 1998]:

Æt =

TX
�=0

��tg(�)�Q(xt; a)� �t (11)

for Monte Carlo learning, and by

Æt = g(t) + maxaQ(xt+1; a)�Q(xt; a)� �t (12)

for Q(�)-learning. The quantity � represents the aver-

age reward per time step of the policy learned so far, to

which the average reward from every state-action pair is

compared. The quantity � is updated at every iteration

according to

�t �t + �Æt: (13)

In order to avoid misleading updates, we specify that

an agent learning with Q(�) does not update its Q-values

until it reaches the �rst opportunity.

IV. Two-Dimensional World

We are now ready to apply the insights obtained from

the simple one-dimensional world to a more complex two-

dimensional world with a continuous state space, as the

one considered in our previous work. The world we have

constructed is a variation of the Tileworld [Pollack and

Ringuette, 1990]. A location in this world is given by

a lattice point - a point with integer coordinates. The

world evolves in discrete time steps. At each time step, an

agent chooses to move either straight or diagonally from

its current location to one of the 8 adjacent locations.

Each step in the world has a certain cost, which is calcu-

lated using the potential �eld method: the cost of moving

to any location is equal to the potential at the destination.

The potential function is generated by randomly choosing

locations of deformations of varying strength that gener-

ate a potential �eld. The centers of deformations have

real-valued coordinates and are not restricted to lie on

the lattice points. The potential at any location due to a

certain deformation is given by

P =

(
h

exp(
d�0:5

k
)

if d > 0:5

h otherwise,

where h is the height of the deformation, d is the distance

to it, and k is a constant specifying the decay rate for the

inuence of this deformation. Potentials due to all defor-

mations add up to give the �nal potential at any location.

An agent then multiplies this sum by a step cost scal-

ing (SCS) parameter to obtain the cost of moving to the

considered location. A deformation is relocated at each

time step with a small probability, and its value changes

randomly during the relocation. Hence, agents are travel-

ling through a constantly changing potential surface and

do not specialize their policies to a particular pattern of

deformations.

Opportunities that promise some rewards appear ran-

domly in di�erent locations. Each opportunity has a cer-

tain lifetime of M , which speci�es that the opportunity

can expire at any time step with probability 1
M
. The

reward and the mean lifetime of every newly appearing

opportunity are drawn from speci�ed probability distribu-

tions. If an agent moves to the location of an unexpired

opportunity, it receives the reward promised by that op-

portunity minus the total path cost since the beginning of

the episode. An opportunity disappears once it has been

reached by an agent and a new opportunity appears in

a randomly chosen location. After that, a new episode

begins. If the opportunity toward which the agent took

its last step expires, the agent obtains a negative reward

equal to its path cost traveled so far and a new episode

begins. The objective of an agent is to maximize the total

reward minus the total cost received during the simula-

tion.

Our tile world was designed to reect the complex trade-

o�s that humans encounter in many decision situations.

The notion of \opportunity" used in our domain descrip-

tion is equivalent to the notion of \alternative" in decision

analysis. One of the main diÆculties in applying decision

analysis to complex situations is that of putting possi-

ble outcomes in the order of preference. In the world

described above, the agent has to balance the reward

of an opportunity against its mean lifetime to come up

with some measure of reward the agent expects to receive.

Then, the agent has to balance distance to this opportu-

nity with roughness of the path toward it to come up with

some measure of cost the agent expects to incur. Finally,

the agent has to balance expected reward with expected

cost to come up with the total desirability of the oppor-

tunity.

A. Decision-Making Process

In order to choose the direction of motion, the agent con-

siders in turn all existing opportunities. For each one, the

agent computes the following four variables:

1. distance to the opportunity

2. reward of the opportunity

3. path roughness to the opportunity

4. mean lifetime of the opportunity

Path roughness to the opportunity gives the agent an

approximate measure of the average cost per step on the

way to that opportunity. It is obtained by �rst construct-

ing an ellipse with the major axis extending from the

agent's current location to the location of the opportunity

and passing some number of units beyond the opportu-

nity. The path roughness is then calculated as the sum

of the values of all deformations in that ellipse divided by

the area of the ellipse.

1 SMALL

.3 .7 1

LARGE

Figure 1: Fuzzy labels used by the agents

The function �k(x) in equation (8) is obtained as fol-

lows. The value of each state variable is described us-

ing two fuzzy labels: SMALL (S) and LARGE (L). The

shapes of these labels are shown in Figure 1. The values

of variables with �nite ranges are scaled to the range [0,1],

while the value of path roughness is scaled so that the ex-

pected roughness would correspond to 0.5. The expected

roughness is calculated as the expected value of each de-

formation multiplied by the number of deformations in

the tile world and divided by the area of the world. The

degree to which an agent belongs to a certain fuzzy state

is the minimum of the degrees to which all state variables

belong to their corresponding labels in this fuzzy state.

Since there are 4 state variables, the total number of pos-

sible fuzzy states is 16. Each of these states has a single

action A associated with it: move toward the considered

opportunity. This gives 16 Q-values that the agent has to

learn. More speci�cally, equation (8) now becomes:

Q(x;A) = �0(x)Q(S; S; S; S;A) + �1(x)Q(S; S; S; L;A)

+:::+ �15(x)Q(L;L; L; L;A): (14)

Since the domain has a high degree of stochasticity, no

exploration is conducted and the agent takes a step to-

ward the opportunity with the highest Q-value. If the Q-

values of several opportunities are equal, the agent chooses

among them at random.

B. Preliminary Analysis

A generalization of a \failure" in the one-dimensional

world is an ordering of Q-values such that for some

X1; X2; X3 we have Q(S;X1; X2; X3) < Q(L;X1; X2; X3),

where each Xi is either S or L. This ordering implies that

keeping everything else equal, the agent will incorrectly

prefer more distant opportunities rather than the closer

ones.

The notion of \failure" can be further extended to cover

other state variables. That is, keeping everything else

equal, the agent should prefer to go for the opportunity

with a larger mean lifetime, smaller path roughness, and

larger reward. However, the agent can learn incorrectly

the reverse of this behavior if at the beginning of the sim-

ulation the agent will experience a very large path cost

while going toward the opportunity with a large reward,

small path roughness, or large mean lifetime. We will call

the orderings of Q-values that lead to such behaviors \in-

correct."

An incorrect ordering of Q-values does not have to spec-

ify an improper policy, unless all eight pairs of Q-values

with respect to the distance variable are inverted. Also,

unlike in the one-dimensional world, such an ordering can

be unlearned using MC learning. For example, if the agent

always goes for the most distant opportunity, then even-

tually such an opportunity will expire punishing the agent

with the incurred path cost.

The intuition obtained from the one-dimensional world

can be used to show that individual agent will learn an

incorrect ordering with a higher probability than two co-

operative agents. As an example, consider the case of

incorrect preference of distance. Let's say that dQ =

Q(S;X1; X2; X3) � Q(L;X1; X2; X3) follows a random

walk during learning with �xed increments of d and that

d < 0 w.p. p and d > 0 w.p. 1�p, where p < 0:5. Initially,

dQ = 0. After the �rst episode, a single agent will learn

an incorrect ordering of dQ < 0 w.p. p. If two cooperative

agents end their episodes simultaneously, they will learn

an incorrect ordering w.p. p2 < p. Hence, we would ex-

pect cooperative agents to perform better when there is a

chance of learning an incorrect ordering of Q-values. The

above reasoning will apply if at any later point in learning

dQ will come close enough to 0 that an episode with a

high path cost can make it negative. In the next section,

we describe the experimental setup for testing the above

conclusions.

C. Experimental Setup

In order to demonstrate clearly the cooperative advan-

tage across di�erent learning algorithms, we use a learn-

ing problem that is more diÆcult than the one considered

in our previous work [Berenji and Vengerov, 1999]. More

precisely, we choose parameters giving higher probability

of learning an incorrect ordering of Q-values.

We used a 11-by-11 tile world in all experiments. There

were always 10 opportunities in the world, and whenever

one of them would be reached by an agent or would expire,

a new one would appear in a random location. The mean

lifetime of each appearing opportunity was uniformly dis-

tributed between 5 and 20, and its value was uniformly

distributed between 30 and 50. The values of appearing

deformations were equal to 90 and the decay constant for

their inuence was 0.2. Each deformation would get re-

located with probability 0.1. There were 10 deformations

in the world. The step cost scaling parameter was equal

to 1.

The learning rate for all algorithms was set to 0.1 in or-

der to provide a natural comparison between simulations

of di�erent time spans. The extra cooperative advantage

cooperative Q-learning f = 0:17 � = 1:92 � = 0:04

independent Q-learning f = 0:21 � = 1:70 � = 0:04

cooperative Q(0.5)-learning f = 0:19 � = 1:10 � = 0:05

independent Q(0.5)-learning f = 0:23 � = 0:85 � = 0:05

cooperative Monte Carlo f = 0:13 � = 1:12 � = 0:03

independent Monte Carlo f = 0:15 � = 0:92 � = 0:03

Table 1: Comparison of cooperative and independent

learning for discounted formulation

was also observed in our previous work for a decreasing

learning rate. We did not consider this case here because

even though it does not change the line of reasoning used

in this paper, it introduces extra complexity that obscures

the studied phenomenon.

Cooperation algorithms have the greatest inuence on

performance at the early stages of learning when agents

have not �nished exploring suÆciently the whole state

space. Therefore, we used a very short time span of �fty

or fewer time steps to compare performances of di�erent

algorithms.

The performance of an agent is computed as the sum

of all rewards minus the sum of all step costs divided by

the number of time steps. Performance of the multi-agent

team was de�ned as the average of this measure over all

agents. Note that this measure is equivalent to the total

reward obtained during the whole simulation.

All performance results represent averages of 20000 sim-

ulations. Such a large number of simulations was needed

because of a highly stochastic nature of our testing do-

main. In each simulation, the training period lasted for

a speci�ed number of time steps, and the testing period

lasted for 100 time steps.

D. Experimental Results and Discussion

This section presents experimental results for some of

the most common reinforcement learning algorithms: Q-

learning, Monte Carlo learning, and Q(0.5)-learning as

a representative of Q(�)-learning. We used two agents

in these experiments, one per world. Cooperative agents

were learning for 25 time steps, while independent agents

were learning for 50 time steps. Note that performance

of two independent agents is just an average of the per-

formance of a single agent over two simulations. As a

benchmark, a non-learning agent acting based on initial

Q-values obtained performance of -6.95. Such an agent

would randomly choose the opportunity to pursue, since

all Q-values were initialized to be equal.

Tables 1 and 2 summarize the obtained results. The

�rst column gives the fraction of incorrect Q-value order-

ings at the end of the learning period. This quantity was

cooperative Q-learning f = 0:20 � = 2:10 � = 0:04

independent Q-learning f = 0:25 � = 1:81 � = 0:04

cooperative Q(0.5)-learning f = 0:22 � = 1:18 � = 0:05

independent Q(0.5)-learning f = 0:26 � = 1:22 � = 0:05

cooperative Monte Carlo f = 0:16 � = 0:92 � = 0:05

independent Monte Carlo f = 0:18 � = 0:59 � = 0:05

Table 2: Comparison of cooperative and independent

learning for average cost formulation

computed in each trial by �rst adding the number of incor-

rect orderings according to all four state variables. Since

each agent used 16 rules, the total number of incorrect

orderings of rule pairs according to each variable is 8, and

the maximum value of the sum across all four variables is

32. The �nal fraction was obtained by dividing the result-

ing sum by 32. The other two columns give performance

mean and standard deviation.

As we can see, cooperative agents perform statistically

better than independent agents in all considered algo-

rithms except for average cost Q(0.5)-learning. At the

same time, the fraction of incorrect orderings of Q-values

is always higher for independent agents than for cooper-

ative agents. The sample standard deviation of this frac-

tion was on the order of 0.0003, which makes the reported

di�erence highly signi�cant. This empirical correlation to-

gether with the analytical results in the one-dimensional

world suggest that the possibility of an incorrect order-

ing of Q-values is essential to the existence of cooperative

advantage.

The case of Q(0.5)-learning suggests that there is a

strong counter force to cooperative advantage. One com-

ponent of this force is the fact that during cooperative

learning, agent 1 does not have information about the ex-

periences of agent 2 until the end of its episode. In con-

trast, during independent learning for a twice longer time

interval, information from the previous episode is always

available at the current episode. There might be other

components to this force hidden in the non-Markovian

character of the considered problems.

Agents using Q-learning perform better than those us-

ing Q(0.5)-learning. This can be explained by recalling

that we allowed agents to learn only for a very short time

interval, and TD(�) methods learn slower for increasing �

[Bertsekas and Tsitsiklis, 1996].

V. Conclusions

In this paper we presented analytical and experimental re-

sults shedding some light on the reason why cooperation

between reinforcement learning agents can give better re-

sults than the ones predicted by Whitehead (1991) for a

restricted class of MDP's.

We note that the reasoning used in this paper holds for

any number of cooperating agents. Also, this reasoning

can be used in a much wider class of problems. For exam-

ple, any problem where agents move in a space with a dis-

tance metric and multiple goals will fall in this category if

no function approximation is used or if local feature-based

approximations are used. A necessary condition for this

is that the probability of learning an \incorrect" ordering

is positive.

Acknowledgments : The authors are very grateful to

Professor Benjamin Van Roy from the EESOR depart-

ment of Stanford University for helpful ideas and com-

ments.

References
Hamid R. Berenji, David Vengerov, (1999) \Cooperation and Co-

ordination Between Fuzzy Reinforcement Learning Agents in Con-

tinuous State Partially Observable Markov Decision Processes," Pro-

ceedings of the 8th IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE '99), pp. 621-627.

Bertsekas, D. P. and Tsitsiklis, J. N., 1996. Neuro-Dynamic Pro-

gramming, Athena Scienti�c.

Kelly, I. D. and Keating, D. A., 1998. \Increased Learning Rates

Through the Sharing of Experiences of Multiple Autonomous Mo-

bile Robot Agents," Proceedings of the Seventh IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE '98).

Littman, M. L., 1994. \Markov Games as a Framework for Multi-

agent Reinforcement Learning," Proceedings of the Eleventh Inter-

national Conference on Machine Learning, pp. 157-163.

Luck, M., 1997. \Foundations of Multi-Agent Systems: Issues

and Directions," The Knowledge Engineering Review, 12(3): 307-

308.

Mataric, M. J., 1997. \Reinforcement Learning in the Multi-

Robot Domain," Autonomous Robots, 4(1).

Pollack, M. E. and Ringuette, M., 1990. \Introducing the Tile-

world: Experimentally Evaluating Agent Architectures," Proceed-

ings of the 8th National Conference on Arti�cial Intelligence (AAAI

'90).

Stone, P. and Veloso, M., 1999. \Team-Partitioned, Opaque-

Transition Reinforcement Learning," Proceedings of Third Interna-

tional Conference on Autonomous Agents (Agents '99).

Sutton, R.S., and Barto, A.G., 1998. Reinforcement Learning:

An Introduction. MIT Press.

Sycara, K. P. 1998. \Multiagent Systems," AI Magazine, summer

1998, pp. 79-92.

Tan, M. 1993. \Multi-Agent Reinforcement Learning: Indepen-

dent vs. Cooperative Agents," Proceedings of the Tenth Interna-

tional Conference on Machine Learning, pp. 330-337.

Tsitsiklis, J. N. and Van Roy, B. 1996. \Feature-Based Methods

for Large-Scale Dynamic Programming,"Machine Learning, Vol. 22,

pp. 59-64.

Whitehead, S. D., 1991. \A Complexity Analysis of Cooperative

Mechanisms in Reinforcement Learning," Proceedings of the 9th Na-

tional Conference on Arti�cial Intelligence (AAAI-91), pp. 607-613.

